Фазированная антенная решётка - определение. Что такое Фазированная антенная решётка
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:     

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Фазированная антенная решётка - определение

РАЗНОВИДНОСТЬ АНТЕННОЙ РЕШЁТКИ
Фазированная антенная решетка; Фазированная решётка; Фазированная решетка; Антенна с электрическим сканированием; Антенна с электронным сканированием
  • ВМС Германии]]
  • Радиолокационная система [[Н010 Жук]]
  • date=20220325061446 }}</ref>.
  • Установка защитного колпака на ФАР
  • Принцип действия фазированной антенной решетки
  • Диаграмма направленности прямоугольной фазированной антенной решетки изотропных элементов, для несущей частоты 2,4 ГГц (<math>n_x=n_y=25</math>, <math>\theta_{Mx}=0</math>, <math>\theta_{My}=10</math>).
  • Классификация антенных решёток; а) линейная; б) дуговая; в) кольцевая; г) плоская; д) цилиндрическая; е) коническая; ж) сферическая; з) неэквидистантная

Фазированная антенная решётка         
(ФАР)

фазированная решётка, Антенная решётка с управляемыми Фазами или разностями фаз (фазовыми сдвигами) волн, излучаемых (или принятых) её элементами (излучателями). Управление фазами (фазирование) позволяет: формировать (при весьма разнообразных расположениях излучателей) необходимую диаграмму направленности (ДН) ФАР (например, остронаправленную ДН - луч); изменять направление луча неподвижной ФАР и т. о. осуществлять быстрое, в ряде случаев практически безынерционное, сканирование - качание луча (см., например, Сканирование в радиолокации); управлять в определённых пределах формой ДН - изменять ширину луча, интенсивность (уровни) боковых лепестков и т.п. (для этого в ФАР иногда осуществляют также управление и амплитудами волн отдельных излучателей). Эти и некоторые другие свойства ФАР, а также возможность применять для управления ФАР современные средства автоматики и ЭВМ обусловили их перспективность и широкое использование в радиосвязи (См. Радиосвязь), радиолокации (См. Радиолокация), радионавигации (См. Радионавигация), радиоастрономии (См. Радиоастрономия) и т.д. ФАР, содержащие большое число управляемых элементов (иногда 104 и более), входят в состав различных наземных (стационарных и подвижных), корабельных, авиационных и космических радиоустройств. Ведутся интенсивные разработки в направлении дальнейшего развития теории и техники ФАР и расширения области их применения.

Структура ФАР. Формы, размеры и конструкции современных ФАР весьма разнообразны; их разнообразие определяется как типом используемых излучателей, так и характером их расположения (рис. 1). Сектор сканирования ФАР определяется ДН её излучателей. В ФАР с быстрым широкоугольным качанием луча обычно используются слабонаправленные излучатели: симметричные и несимметричные Вибраторы, часто с одним или несколькими рефлекторами (например, в виде общего для всей ФАР зеркала); открытые концы Радиоволноводов, щелевые, рупорные, спиральные, диэлектрические стержневые, логопериодические и др. Антенны. Иногда большие по размерам ФАР составляют из отдельных малых ФАР (модулей); ДН последних ориентируется в направлении основного луча всей ФАР. В ряде случаев, например когда допустимо медленное отклонение луча, в качестве излучателей используют остронаправленные антенны с механическим поворотом (например, т. н. полноповоротные зеркальные); в таких ФАР отклонение луча на большой угол выполняют посредством поворота всех антенн и фазирования излучаемых ими волн; фазирование этих антенн позволяет также осуществлять в пределах их ДН быстрое качание луча ФАР.

В зависимости от требуемой формы ДН и необходимого пространственного сектора сканирования в ФАР применяют различное взаимное расположение элементов: вдоль линии (прямой или дуги); по поверхности (например, плоской - в т. н. плоских ФАР; цилиндрической; сферической) или в заданном объёме (объёмные ФАР). Иногда форма излучающей поверхности ФАР - раскрыва (см. Излучение и приём радиоволн), определяется конфигурацией объекта, на котором устанавливается ФАР (например, формой ИСЗ). ФАР с формой раскрыва, подобной форме объекта, иногда называются конформными. Широко распространены плоские ФАР; в них луч может сканировать от направления нормали к раскрыву (как в синфазной антенне (См. Синфазная антенна)) до направления вдоль раскрыва (как в бегущей волны антенне (См. Бегущей волны антенна)). Коэффициент направленного действия (КНД) плоской ФАР при отклонении луча от нормали к раскрыву уменьшается. Для обеспечения широкоугольного сканирования (в больших пространственных углах - вплоть до 4(стер) без заметного снижения КНД используют ФАР с неплоским (например, сферическим) раскрывом или системы плоских ФАР, ориентированных в различных направлениях. Сканирование в этих системах осуществляется посредством возбуждения соответственно ориентированных излучателей и их фазирования.

По характеру распределения излучателей в раскрыве различают эквидистантные и неэквидистантные ФАР. В эквидистантных ФАР расстояния между соседними элементами одинаковы по всему раскрыву. В плоских эквидистантных ФАР излучатели чаще всего располагают в узлах прямоугольной решётки (прямоугольное расположение) или в узлах треугольной сетки (гексагональное расположение). Расстояния между излучателями в эквидистантных ФАР обычно выбирают достаточно малыми (часто меньше рабочей длины волны), что позволяет формировать в секторе сканирования ДН с одним главным лепестком (без побочных дифракционных максимумов - т. н. паразитных лучей) и низким уровнем боковых лепестков; однако для формирования узкого луча (т. е. в ФАР с большим раскрывом) необходимо использовать большое число элементов. В неэквидистантных ФАР элементы располагают на неодинаковых расстояниях друг от друга (расстояние может быть, например, случайной величиной). В таких ФАР даже при больших расстояниях между соседними излучателями можно избежать образования паразитных лучей и получать ДН с одним главным лепестком. Это позволяет в случае больших раскрывов сформировать очень узкий луч при сравнительно небольшом числе элементов; однако такие неэквидистантные ФАР с большим раскрывом при малом числе излучателей имеют более высокий уровень боковых лепестков и, соответственно, более низкий КНД, чем ФАР с большим числом элементов. В неэквидистантных ФАР с малыми расстояниями между излучателями при равных мощностях волн, излучаемых отдельными элементами, можно получать (в результате неравномерного распределения плотности излучения в раскрыве антенны) ДН с более низким уровнем боковых лепестков, чем в эквидистантных ФАР с таким же раскрывом и таким же числом элементов.

Управление фазовыми сдвигами. По способу изменения фазовых сдвигов различают ФАР с электромеханическим сканированием, осуществляемым, например, посредством изменения геометрической формы возбуждающего радиоволновода (рис. 2, а); частотным сканированием, основанным на использовании зависимости фазовых сдвигов от частоты, например за счёт длины Фидера между соседними излучателями (рис. 2, б) или дисперсии (См. Дисперсия) волн в радиоволноводе; с электрическим сканированием, реализуемым при помощи фазосдвигающих цепей (См. Фазосдвигающая цепь) или фазовращателей (См. Фазовращатель), управляемых электрическими сигналами (рис. 2, в) с плавным (непрерывным) или ступенчатым (дискретным) изменением фазовых сдвигов.

Наибольшими возможностями обладают ФАР с электрическим сканированием. Они обеспечивают создание разнообразных фазовых сдвигов по всему раскрыву и значительную скорость изменения этих сдвигов при сравнительно небольших потерях мощности. На СВЧ в современных ФАР широко используют ферритовые и полупроводниковые фазовращатели (с быстродействием порядка мксек и потерями мощности Фазированная антенная решётка 20\%). Управление работой фазовращателей осуществляется при помощи быстродействующей электронной системы, которая в простейших случаях управляет группами элементов (например, строками и столбцами в плоских ФАР с прямоугольным расположением излучателей), а в наиболее сложных - каждым фазовращателем в отдельности. Качание луча в пространстве может производиться как по заранее заданному закону, так и по программе, вырабатываемой в ходе работы всего радиоустройства, в которое входит ФАР.

Особенности построения ФАР. Возбуждение излучателей ФАР (рис. 3) производится либо при помощи фидерных линий, либо посредством свободно распространяющихся волн (в т. н. квазиоптических ФАР), фидерные тракты возбуждения наряду с фазовращателями иногда содержат сложные электрические устройства (т. н. диаграммообразующие схемы), обеспечивающие возбуждение всех излучателей от нескольких входов, что позволяет создать в пространстве соответствующие этим входам одновременно сканирующие лучи (в многолучевых ФАР). Квазиоптические ФАР в основном бывают двух типов: проходные (линзовые), в которых фазовращатели и основные излучатели возбуждаются (при помощи вспомогательных излучателей) волнами, распространяющимися от общего облучателя, и отражательные - основной и вспомогательные излучатели совмещены, а на выходах фазовращателей установлены отражатели. Многолучевые квазиоптические ФАР содержат несколько облучателей, каждому из которых соответствует свой луч в пространстве. Иногда в ФАР для формирования ДН применяют фокусирующие устройства (зеркала, линзы). Рассмотренные выше ФАР иногда называются пассивными.

Наибольшими возможностями управления характеристиками обладают активные ФАР, в которых к каждому излучателю или модулю подключен управляемый по фазе (иногда и по амплитуде) передатчик или приёмник (рис. 4). Управление фазой в активных ФАР может производиться в трактах промежуточной частоты либо в цепях возбуждения когерентных передатчиков, гетеродинов приёмников и т.п. Таким образом, в активных ФАР фазовращатели могут работать в диапазонах волн, отличных от частотного диапазона антенны; потери в фазовращателях в ряде случаев непосредственно не влияют на уровень основного сигнала. Передающие активные ФАР позволяют осуществить сложение в пространстве мощностей когерентных электромагнитных волн, генерируемых отдельными передатчиками. В приёмных активных ФАР совместная обработка сигналов, принятых отдельными элементами, позволяет получать более полную информацию об источниках излучения.

В результате непосредственного взаимодействия излучателей между собой характеристики ФАР (Согласование излучателей с возбуждающими фидерами, КНД и др.) при качании луча изменяются. Для борьбы с вредными последствиями взаимного влияния излучателей в ФАР иногда применяют специальные методы компенсации взаимной связи между элементами.

Перспективы развития ФАР. К наиболее важным направлениям дальнейшего развития теории и техники ФАР относятся: 1) широкое внедрение в радиотехнические устройства ФАР с большим числом элементов, разработка элементов новых типов, в частности для активных ФАР; 2) развитие методов построения ФАР с большими размерами раскрывов, в том числе неэквидистантных ФАР с остронаправленными антеннами, расположенными в пределах целого полушария Земли (глобальный Радиотелескоп), 3) дальнейшая разработка методов и технических средств ослабления вредных влияний взаимной связи между элементами ФАР; 4) развитие теории синтеза и методов машинного проектирования ФАР; 5) разработка теории и внедрение в практику новых методов обработки информации, принятой элементами ФАР, и использования этой информации для управления

ФАР, в частности для автоматического фазирования элементов (самофазирующиеся ФАР) и изменения формы ДН, например понижения уровня боковых лепестков в направлениях на источники помех (адаптивные ФАР); 6) разработка методов управления независимым движением отдельных лучей в многолучевых ФАР.

Лит.: Вендик О. Г., Антенны с немеханическим движением луча, М., 1965; Сканирующие антенные системы СВЧ, пер. с англ., т. 1-3, М., 1966-71.

М. Б. Заксон.

Рис. 1. Структурные схемы некоторых фазированных антенных решеток (ФАР) - линейной эквидистантной с симметричными вибраторами и общим зеркалом (а); линейной неэквидистантной с полноповоротными зеркальными параболическими антеннами (б); плоской с прямоугольным расположением рупорных излучателей (в); плоской с гексагональным расположением диэлектрических стержневых излучателей (г); конформной с щелевыми излучателями (д); сферической со спиральными излучателями (е); системы плоских фазированных антенных решеток (ж); В - вибраторы; Ф - линии возбуждения (фидеры); З - токопроводящее зеркало (рефлектор); А - зеркальные антенны; Р - рупоры; ВР - возбуждающие радиоволны; Э - металлический экран; Щ - щелевые излучатели; К - коническая ФАР; Ц - цилиндрическая ФАР; С - спиральные излучатели; СЭ - сферический экран; П - плоские фазированные антенные решетки (точками обозначены излучатели); L0 - расстояние между В; l1, l 2, l3 - расстояния между А.

Рис. 2. Примеры фазированных антенных решёток с электромеханическим (а), частотным (б) и электрическим (в) сканированием: Щ, - щелевые излучатели; В - прямоугольный возбуждающий волновод; Н - продольная пластина (нож) с управляемой глубиной погружения в волновод (служит для изменения фазовой скорости волны в волноводе); Д - дроссельные канавки; Р - рупоры; СВ - спиральный волновод; ДА - диэлектрические стержневые антенны; Ф - ферритовый стержень фазовращателя; ВВ - возбуждающие волноводы; О - управляющая обмотка фазовращателя; Ш - диэлектрическая шайба.

Рис. 3. Типовые схемы возбуждения фазированных антенных решёток (ФАР) с последовательных возбуждением (а), параллельным возбуждением (б), многолучевой ФАР (в), квазиоптических ФАР - проходного (г) и отражательного (д) типов: В - возбуждающий фидер; И - излучатели; ПН - поглощающая нагрузка; Л - диаграмма направленности (луч); B1 - B4 входы ФАР; ДС - диаграммообразующая схема; ОИ - основные излучатели; ВИ - вспомогательные излучатели; СИ - совмещенные излучатели; О - облучатель; От - отражатель; φ - фазовращатель; пунктиром изображена электромагнитная волна с плоским фазовым фронтом, излучаемая ФАР, штрих-пунктиром - со сферическим фазовым фронтом, излучаемая облучателем.

Рис. 4. Структурные схемы некоторых активных фазированных антенных решёток - передающей (а), приёмной с фазированием в цепях гетеродина (б) и приёмной с фазированием в трактах промежуточной частоты (в): И - излучатель; УМ - усилитель мощности; В - возбудитель; С - смеситель; Г - гетеродин; УПЧ - усилитель промежуточной частоты; СУ - суммирующее устройство; φ - фазовращатель.

Фазированная антенная решётка         
Фазированная антенная решётка (ФАР) — антенная решёткаАнтенная решётка — совокупность излучающих элементов, расположенных в определённом порядке, ориентированных и возбуждаемых так, чтобы получить заданную диаграмму направленности. ГОСТ 23282-91. Решетки антенные. Термины и определения., направление излучения и (или) форма соответствующей диаграммы направленности которой регулируются изменением амплитудно-фазового распределения токов или полей возбуждения на излучающих элементахГОСТ 23282-91. Решётки антенные. Термины и определения..
ФАЗИРОВАННАЯ АНТЕННАЯ РЕШЕТКА         
(фазированная решетка) , антенная решетка с управляемыми фазами или разностями фаз (фазовыми сдвигами) волн, излучаемых (или принятых) ее элементами. Фазирование позволяет, напр., формировать необходимую диаграмму направленности, управлять ее положением и формой. Используется в наземных и космических устройствах радиосвязи, радиолокации, радиоастрономии и т. д.

Википедия

Фазированная антенная решётка

Фазированная антенная решётка (ФАР) — антенная решётка, направление излучения и (или) форма соответствующей диаграммы направленности которой регулируются изменением амплитудно-фазового распределения токов или полей возбуждения на излучающих элементах.

Излучающий элемент (антенной решётки) — составная часть антенной решётки, антенна или группа антенн с заданным относительным возбуждением. В антенной решётке требуемая диаграмма направленности формируется благодаря специальным образом организованной интерференции электромагнитных волн, излучаемых в пространство её излучающими элементами. Для этого обеспечивают необходимое амплитудно-фазовое распределение — необходимые относительные амплитуды и начальные фазы переменных токов или полей возбуждения каждого излучающего элемента антенной решётки. Отличие фазированной антенной решётки заключается в том, что амплитудно-фазовое распределение не является фиксированным, оно может регулироваться (управляемо изменяться) при эксплуатации. Благодаря этому можно перемещать луч (главный лепесток диаграммы направленности) антенной решётки в определённом секторе пространства (антенная решётка с электрическим сканированием луча как альтернатива антенне с механическим сканированием, то есть альтернатива механически вращающейся антенне) или изменять форму диаграммы направленности.

Эти и некоторые другие свойства ФАР, а также возможность применять для управления ФАР современные средства автоматики и вычислительной техники, обусловили их перспективность и широкое использование в радиосвязи, радиолокации, радионавигации, радиоастрономии и т. д. ФАР, содержащие большое число управляемых элементов, входят в состав различных наземных (стационарных и подвижных), корабельных, авиационных и космических радиотехнических систем. Ведутся интенсивные разработки в направлении дальнейшего развития теории и техники ФАР и расширения области их применения.

Примеры употребления для Фазированная антенная решётка
1. МиГ-35 снабжён радиолокатором с электронным сканированием (другое название - фазированная антенная решётка). благодаря ему пилот может отслеживать более 30 воздушных целей и одновременно наводить ракеты на 4-8 из них. антенна радара состоит из 2 тысяч приёмопередающих модулей (каждый - как миниатюрный радар), отчего сигнал получается более качественным и объёмным.